Antennas: From Ham Radio to Modern Communication Systems

Hanseung Lee (hlee@hrl.com)

May 9, 2023

Agenda

- 1. Antenna Theory
 - Radiation Mechanism
 - Antenna Parameters
- 2. Antenna Applications
 - Ham Radio
 - Satellite Communication
 - 5G Cellular Communication
 - Antenna Array

Antenna Theory

Antenna Applications

Ham Radio **Cellular and Satellite Communication** TINT **UHF Repeater** UHE TX/RX TX/RX VHF Simplex **Wireless Communication** UHF TX/RX Cross Band Mobile Repeate ithin range of both HT's & **IHF Repeate** TX/RX HT's outside range of UHF Repeater https://myoffroadradio.com/what-is-a-ham-radio-repeater/ https://www.cell-sat.com/en/solutions/local switching local processing.html

Airport Scanning Radar Antenna

TI Automotive Radar Sensor

An antenna is an essential element for all wireless communication systems and most of radars and sensors.

Radar & Sensor

How Antennas Radiate*

- Physics behind: Radiation is created by accelerated charges
- Accelerating charges -> changing electric and magnetic fields -> propagating electromagnetic waves.
- $I = q \cdot v$ (current = charge x velocity)
- dl/dt = q · dv/dt (time varying current = accelerated charge)
- Time-varying current source (accelerated charges) exposed under an

open space creates radiation.

* Referenced Prof. Ethan Wang's and Prof. Yahya Rahmat-Samii's classes

How to Get Radiation Characteristic*

Q: Can we find the radiation performance of the antenna with given the distribution of time-varying current?

A: Antenna's radiation characteristic can be solved by the **vector superposition** of the elementary current elements.

Short Dipole

Spherical Coordinate $x = r \sin \theta \cos \varphi$ $y = r \sin \theta \sin \varphi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \cos^{-1}(z/r)$ $\varphi = tan^{-1}(y/x)$

How to Solve Electromagnetic (EM) Field of Antenna

- 1. Find expression of antenna's current function
- From the current function, calculate vector potential A(r) (A(r), extracted from Maxwell's eq.)
- 3. Find magnetic field **H** from the vector potential
- 4. Find electric field E from the magnetic field

Short Dipole Electromagnetic Field

$$\begin{pmatrix}
E_R = \frac{I_0 lk^2}{2\pi} \eta_0 e^{-jkr} \left[\frac{1}{(kr)^2} - \frac{j}{(kr)^3} \right] \cos \theta \\
E_\theta = \frac{I_0 lk^2}{4\pi} \eta_0 e^{-jkr} \left[\frac{j}{kr} + \frac{1}{(kr)^2} - \frac{j}{(kr)^3} \right] \sin \theta \\
H_\phi = \frac{I_0 lk^2}{4\pi} e^{-jkr} \left[\frac{j}{kr} + \frac{1}{(kr)^2} \right] \sin \theta$$

k= $2\pi/\lambda$: free space wave number

Short Dipole*

$$\begin{cases} H_{\phi} = \frac{I_0 lk^2}{4\pi} e^{-jkR} \left[\frac{j}{kR} + \frac{1}{(kR)^2} \right] \sin \theta \\ E_R = \frac{2I_0 lk^2}{4\pi} \eta_0 e^{-jkR} \left[\frac{1}{(kR)^2} - \frac{j}{(kR)^3} \right] \cos \theta \\ E_{\theta} = \frac{I_0 lk^2}{4\pi} \eta_0 e^{-jkR} \left[\frac{j}{kR} + \frac{1}{(kR)^2} - \frac{j}{(kR)^3} \right] \sin \theta \end{cases}$$
Source
Transmitting
Source
Transmitting

When $R >> \lambda$, then $\frac{1}{R^2}$, $\frac{1}{R^3}$ terms are gone in the above expressions,

Therefore, we should have,

$$E_{\theta} = \frac{jI_{0}lk}{4\pi} \eta_{0} \left(\frac{e^{-jkR}}{R} \right) \sin \theta \qquad \text{Similar to plane waves!}$$

$$H_{\phi} = \frac{jI_{0}lk}{4\pi} \left(\frac{e^{-jkR}}{R} \right) \sin \theta = \frac{E_{\theta}}{\eta_{0}}$$

* From Prof. Ethan Wang's class

Radiation Pattern of Short Dipole*

H-plane radiation pattern

3-D view - "Donut" shape

* From Prof. Ethan Wang's class

Antenna Parameter: Pattern*

Normalized field pattern:
$$F(\theta, \phi) = \frac{E_{\theta}}{E_{\theta}(\max)}$$
For infinitestimal dipole, $F(\theta) = \frac{(II/4\pi)j\omega\mu(e^{-jkr}/r)\sin\theta}{(II/4\pi)j\omega\mu(e^{-jkr}/r)} = \sin\theta$ $F(\theta, \phi) = g(\theta, \phi)f(\theta, \phi)$ $\begin{cases} g(\theta, \phi) & \text{Element factor} \\ f(\theta, \phi) & \text{Pattern factor} \end{cases}$ For z directed current element, $g(\theta) = \sin\theta$ Uniform line source pattern: $f(\theta) = \frac{\sin[(kL/2)\cos\theta]}{(kL/2)\cos\theta}$ $\cos(\frac{\pi}{c}\cos\theta)$

Half-wave dipole pattern:

 $f(\theta) = \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin^2\theta}$

Antenna Parameter: Pattern*

Side lobe level is defined as:

$$SLL_{dB} = 10\log \frac{|F(SLL)|}{|F(\max)|}$$

Half-power beamwidth:

Ζ

$$HP = \left| \theta_{HPleft} - \theta_{HPright} \right|$$

Antenna Parameter: Pattern*

* From Prof. Ethan Wang's class

Antenna Parameter: Directivity & Gain

- Directivity is the ratio of maximum radiation density to the average density.
- Directivity of isotropic antenna: D_{iso} = 1, D_{iso} = 0 dBi
- Directivity of half-wave dipole: D = 1.64, D = 2.15 dBi
- Larger directivity means more directional beam pattern. Directivity is solely determined by the radiation pattern.
- Gain: In real systems, antennas have loss. Gain is directivity considering antenna loss.
- With radiation efficiency $e_r = P_{rad}/P_{in}$, $G = e_r \cdot D$
- Typical antennas have dielectric loss and conductive loss.

Antenna Parameter: Polarization*

Antenna Applications

Various Type of Antennas*

Ham Radio: Dipole Antenna*

Various Length of Dipoles $\int_{L=\frac{\lambda}{2}} \int_{L=\frac{3}{4}\lambda} \int_{L=\lambda} \int_{L=\lambda} \int_{L=\frac{5}{4}\lambda} \int_{L=\frac{3}{2}\lambda} \int_{L=\frac{3}{2}\lambda}$

Arrows indicate relative current directions for maximum current conditions.

Radiation Patterns of Various Dipoles

- Larger than one wavelength of dipole produces multiple lobes that are not typically preferred.
- Radiation pattern of longer dipole shows narrower beam-width.

Ham Radio: Dipole Antenna*

Typical ham radio transceivers require 50 ohm input impedance of antenna. If your antenna does not provide 50 ohm impedance, additional matching will be required for increasing communication distance.

Ham Radio: Yagi-Uda Antenna*

Yagi-Uda antenna provide more direction beam (higher antenna gain) with simple configuration. Therefore, this type of antenna is commonly used in Ham Radio.

Satellite Comm.: Reflector Antenna*

Reflector antennas provide very high gain (> 50dBi) and narrow beam. Therefore, it is suitable for satellite communication systems.

Satellite Comm.: Reflector Antenna Feed Horn*

Horn antennas are well established technology and predictable. They are mainly used for feedings of reflector antennas or measurement equipments.

5G Comm.: Patch Antenna

Fujitsu 28 GHz, 4-Beam, 128-Element Phased Array Antenna

Patch Antenna Radiation Mechanism

- Radiation comes from slots on edges.
- Fringing fields on two edges are in phase.

Because of the simplicity and conformality, patch antennas are used in various communication systems including airborne, vehicle, cell phone, body-worn, satellite, and etc..

Antenna Array

Phased Antenna Array* In general, the $AF = I_0 + I_1 e^{j\beta d\cos\theta} + I_2 e^{j\beta 2d\cos\theta} + \dots = \sum_{n=1}^{\infty} I_n e^{j\beta nd\cos\theta}$ array factor is For linear phase progression, $I_n = A_n e^{jn\alpha},$ $\partial = \frac{AF}{z} = \sum_{n=0}^{N-1} A_n e^{jn(\beta d \cos \theta + \alpha)}$ $d\cos\theta$ Define $\psi = \beta d \cos \theta + \alpha$ Then $AF = \sum_{n=0}^{N-1} A_n e^{jn\psi}$ Pattern from aperture antennas: Fourier Integration Pattern from antenna arrays: Fourier series

You can control antenna's gain and pattern with antenna arrays. Electrically controlled beam scanning and shaping are also available.

* From Wikipedia

* * From Prof. Ethan Wang's class

Linear Array Antenna Calculation**

Q & A