RECENT INTERESTING AND USEFUL ENHANCEMENTS OF POLYPHASE FILTER BANKS

Parts of presentations made at the 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC 2020 Virtual Edition)
18-21 October 2020
Okayama, Japan

fred harris

UCSanDiego
Jacobs School of Engineering
Best Paper Award at Conference

Atlanta Section Chapter, COM19
Buenaventura Section Chapter, COM19
Coastal Los Angeles Sect Chapter, SP01, VT06/Com19 Seattle Sect Jt. Chapter, COM19/VT06/BT02/IT12/ITS38

Advancing Technology for Humanity

What the Customer Wants

What ever you told the Customer, this is what he/she Heard:

More Bandwidth
More Dynamic Range
More Formats
More Options
More Bells
More Whistles
More
More
More
More

What the Customer Expects to Pay

When the Customer Wants it.

Size the Customer Wants.

When a sampled data filter reduces bandwidth, it makes sense that the system should also reduce sample rate.
It would be interesting if the filter could do both; reduce BW and reduce sample rate

Re-Sampling!

Does That Mean
 We Didn't Do it Right the First time?

Common Down Sampling Filters

DYADIC HALF-BAND FLIITR

Dual LTI Filters Have Same Transfer Function

Dual Graphs:
Replace Nodes with Summing Junctions, Replace Summing Junctions with Nodes, Reverse Direction of Arrows.

Dual graph is Seen as transposing State transition matrix

Dual LTV Filters Perform Opposite Function

M-to-1 Down Sampler
1-to-M Up Sampler

Motivation For Using Multirate Filters

Processing Task:
 Obtain Digital Samples of Complex Envelope Residing at Frequency f_{C}

\author{

$\substack{\text { Analog } \\$ Multi-Channel $\\ \text { FDM } \\ \text { Input Signal }$$}$	Sigital Sngle-Channel Base banded Output Sgnal

}

Applause from Audience When I presented this slide At Signal Processing Society Meeting at
Brigham Young University Michael Rice was my host

See!

DSP Insertion in Communication Systems

Instinctive First Response:
 Copy Legacy Analog Prototype

-We should avoid this approach!!

- If we don't, we emulate an analog design!
- That is not the reason we invoke and apply DSP!
- DSP is inserted to improve performance and reduce cost!
- Analog prototype systems incorporate design compromises appropriate for the time they were made!
-We don't want to perpetuate those compromises!
- We have access to tools and resources not available to past designers!

First Generation DSP Receiver

Signal Conditioning for DSP Receiver

Duplicate Analog Processing in DSP

Fundamental Operations Select Frequency, Limit Bandwidth, Select Sample Rate

Spectral Description
 Fundamental Operation

Signal and Filter are at Different Frequencies Which One to Move??

Second Option
First
Option

Down Sample Complex Digital IF

Fundamental Operation Modified

Equivalency Theorem

I learned this from Irwin Jacobs in 1970 when I was a grad student at UCSD

Communication Systems
Principles of Communication Engineering Wozencraft and Jacobs

$$
\begin{aligned}
r(n) & =s(n) e^{-j \theta_{0} n} * h(k) \\
& =\sum_{k} s(n-k) e^{-j \theta_{0}(n-k)} h(k) \\
& =e^{-j \theta_{0} n} \sum_{k} s(n-k) h(k) e^{j \theta_{0} k} \\
& =e^{-j \theta_{0} n}\left\{s(n) * h(n) e^{j \theta_{0} n}\right\}
\end{aligned}
$$

Signal Flow Description of Equivalency Theorem

Reorder Translate and Resample

SPECTRAL DESCRIPTION
 REORDERED FUNDAMENTAL OPERATION

TRANSATED REPUCATESATDOWN-SAMPLED RATE

Successive Transformations to turn Sampled Data Version of Edwin Armstrong's Heterodyne Receiver to Tuned Radio Frequency (TRF) Receiver to Aliased TRF Receiver.

Common Sense Theorem
Can build DSP receiver Without a digital Down Converter

$$
\mathrm{M} \cdot \theta_{\mathrm{k}}=\mathrm{k} \cdot 2 \pi
$$

$$
\text { or } \theta_{\mathrm{k}}=\mathrm{k} \cdot \frac{2 \pi}{\mathrm{M}}
$$

Now Problem Of computing Output samples Destined to be Be discarded

Coefficient Assignment of Polyphase Partition

For M-to-1 resample start at Index r and Increment by M For 3-to-1 resample start at index r and increment by 3

Extract Delays To First Non-Zero Coefficient

This mapping from 1-D to 2-D is used by Cooley-Tukey FFT.
Polyphase Filters and CT-FFT are kissing cousins!

Polyphase Partition of Low Pass Filter 1-Path to M-Path Transformation

$$
\begin{aligned}
& H(Z)=\sum_{n=0}^{N-1} h(n) Z^{-n} \\
& H(Z)=\sum_{r=0}^{M-1} \sum_{n=0}^{N-1} h(r+n M) Z^{-(r+n M)} \\
& H(Z)=\sum_{r=0}^{M-1} Z^{-r} \sum_{n=0}^{N-1} h(r+n M) Z^{-n M}
\end{aligned}
$$

M-Path Partition Supports M-to-1 Down Sample
Also Supports Rational Ratio M-to-Q and M-to-Q/P Down Sample!

Polyphase Partition of Band Pass Filter 1-Path to M-Path Transformation

Modulation Theorem of Z-Transform

$$
\begin{aligned}
& G(Z)=\sum_{n=0}^{N-1} h(n) e^{j \theta_{k} n} Z^{-n}=\sum_{n=0}^{N-1} h(n)\left(e^{-j \theta_{k}} Z\right)^{-n}=H\left(e^{-j \theta_{k}} Z\right) \\
& G(Z)=\sum_{r=0}^{M-1} \sum_{n=0}^{N-1} h(r+n M) e^{j \theta_{k}(r+n M)} Z^{-(r+n M)} \\
& G(Z)=\sum_{r=0}^{M-1} e^{j \theta_{k} r} Z^{-r} \sum_{n=0}^{N-1} h(r+n M) e^{j \theta_{k} n M} Z^{-n M} \\
& G(Z)=\sum_{r=0}^{M-1} e^{j \frac{2 \pi}{M} k r} Z^{-r} \sum_{n=0}^{N-1} h(r+n M) Z^{-n M}
\end{aligned} \begin{aligned}
& \mathrm{M} \cdot \theta_{\mathrm{k}}=\mathrm{k} \cdot 2 \pi \\
& \text { or } \theta_{\mathrm{k}}=\mathrm{k} \cdot \frac{2 \pi}{\mathrm{M}}
\end{aligned}
$$

Polyphase Band Pass Filter and M-to-1 Resampler

Noble Identity: Commute M-units of Delay followed by M-to-1 Down Sample

M-Units of Delay at Input Rate Same as 1-Unit of Delay at Output Rate

Apply Noble Identity to Polyphase Partition

We Reduce Sample Rate M-to-1 Prior to Reducing Bandwidth
(Nyquist is Raising His Eyebrows!)
We Intentionally Alias the Spectrum. (Were you Paying Attention in school when they discussed the importance of anti-aliasing filters?)

M-fold Aliasing!
M-Unknowns!
M-Paths supply M-Equations
We can the separate Aliases!

Move Phase Spinners to Output of Polyphase Filter Paths

Want Phase Spinners as far away from resampler as possible

Polyphase Partition with Commutator Replacing the " r " Delays in the "r-th" Path

Note: We don't assign Phase Spinners to Select Desired Center Frequency Till after Down Sampling And Path Processing

This Means that The Processing for every Channel is the same till the Phase Spinners

No longer LTI, Filter now has M-Different Impulse Responses! Now LTV or PTV Filter.

Armstrong to Tuned RF with Alias Down Conversion to Polyphase Receiver

Rather than selecting center frequency at input and reduce sample rate at output, we reverse the order, reduce sample rate at input and select center frequency at output. We perform arithmetic operations at low output rate rather than at high input rate!

Reorder Filter and Resample

A Sad but True Story!

- In 1983 I designed a 65536 channelizer for GTE in San Jose in response to a Request for Proposal (RFP) for Multi channel receiver for US Navy.
- My Design aliased all 65 k channels to baseband by down sampling prior to any signal processing. I then used the phase rotators of the IFFT to extract (un-alias) the separate channels.
- I was sure we would be famous. We were revolutionizing channelizers! And GTE was assured to be awarded the contract!
- The proposal was returned to us by the reviewer with big red letters across the face of the proposal saying...

"Those Who Don't Understand The Nyquist Theorem Shouldn't be Doing Signal Processing"

What I Learned is that if you are smarter than your reviewer, you are both in trouble.

Polyphase Partition

Single Channel Armstrong and Multirate Aliased Polyphase Receiver

Rather than select the band you want to move to baseband (Armstrong heterodyne), you move all bands to baseband and extract the alias of interest by phase coherent Summation which destructively cancels all other aliases.

Dual Channel Armstrong and Multirate Aliased Polyphase Receiver

M-Channel Polyphase Channelizer: M-path Filter and M-point FFT

Advantage of Polyphase Filter over single stage tapped delay line implementation

Homey Spector

Sample Rate Large Compared to Bandwidth BW $=40 \mathrm{kHz}$

$$
\begin{aligned}
& N_{1} \cong \frac{f_{s}}{\Delta f} \frac{\operatorname{Atth} d \nexists}{20} \\
& N_{1}=\frac{4000}{40} \frac{80}{20}=400 \mathrm{Taps}
\end{aligned}
$$

$$
\min \mathrm{f}_{s}=80 \mathrm{kHz}
$$

$$
\mathrm{f}_{\mathrm{s}}>\mathrm{BW}+\Delta \mathrm{f}
$$

(2 sided BW + transition BW

Nyquist Rate for Filter is 80 kHz or fs/50
Can Perform 50-to-1 Down Sample and Still Satisfy Nyquist

Reduce Sample Rate at Input to Filter: Very Efficient Implementation!

Down Sample to Reduce Sample Rate in Proportion to Bandwidth Reduction and Up Sample to Preserve Input Sample Rate.

Efficient Polyphase Filter

16 Ops per Input-Output Sample Replaces

Different Processes in Two Boxes:

 How can you tell which is which from outside box?

> Inner Filter: 1/M Length Reduction, 1/M Clock Reduction, $1 / \mathrm{M}^{2}$ Workload Reduction

Standard M-Path Polyphase Analysis Channelizer

Channel Spacing from IFFT
Channel Bandwidth from Filter Prototype Output Sample Rate for Input Commutator

Conventional Channelizer Center Frequencies Match Frequencies of M-Point IFFT, the integer Multiples of $\mathrm{fs} / \mathrm{M}, \mathrm{k} \cdot \mathrm{fs} / \mathrm{M}$
We Identify these Frequencies as the Even Multiples of $\mathrm{fs} /(2 \mathrm{M}),(2 \mathrm{k}) \cdot \mathrm{fs} /(2 \mathrm{M})$

24 Channel Centers on Odd Multiples of 12

Offset Channelizer Center Frequencies are Midway Between Frequencies of M-
Point IFFT, the Integer plus $1 / 2$ Multiples of $f s / M,(k+0.5) \cdot f s / M$
We Identify these Frequencies as the Odd Multiples of $\mathrm{fs} /(2 \mathrm{M}),(2 \mathrm{k}+1) \cdot \mathrm{fs} /(2 \mathrm{M})$

Receiver Channelizer Specifications

> Channel Spacing:
> Channel Bandwidth:
> Channel Sample Rate:
> Transition Bandwidth:
> Number of Channels:
> IFFT Size:
> Input Sample Rate:
> In-Band Ripple:
24.0 MHz
23.5 MHz
24.0 MHz
0.5 MHz

24
30
720 MHz
0.1 dB
> Stop band Attenuation: 50 dB
> Linear Phase FIR Filter
Number of Taps in Prototype
FIR Filter: 3720 Taps

$$
N_{\text {Taps }} \cong \frac{f s}{\Delta f} \frac{\text { attent } d \boldsymbol{P} P}{20}
$$

$$
=\frac{720}{0.5} \frac{50}{20}
$$

$$
=1440 \cdot 2.5=3600 \text { Taps }
$$

$$
\text { Actual }=3720 \text { Taps }
$$

Due to $1 / f$ stopband slope

Frequency Response of Prototype Filter
In 30-Path Filter, 124 Taps per path at 24 MHz Sample Rate
Frequency Response, 3720 Tap 30 Path Filter, 30 Channel Channelizer,
Input Sample Rate $\mathbf{7 2 0}$ MHz, Output Sample Rate $\mathbf{2 4 ~ M H z}$

Transition BW Detail

First Option to Convert Channelizer from Even Indexed Bin Centers to Odd Indexed Bin Centers Shift Input Spectra to Filter Spectral Locations

12 MHz Frequency Offset Heterodyne Operating at 720 MHz To obtain Odd Indexed Frequency Bins
fs $=720 \mathrm{MHz}$

Second Option to Convert Channelizer from Even Indexed Bin Centers to Odd Indexed Bin Centers

Shift Filter Spectra to Signal Spectral Locations
12 MHz Frequency Offset Heterodyne Embedded in M-Path Filter Arms Operating at 24 MHz Sample Rate To obtain Odd Indexed Frequency Bins

(M/2)-to-1 Downsampled Non-Maximally Decimated M-Path Filter Doubles Output Sample Rate

With Increased Output Sample Rate we can Increase Transition Bandwidth

Original Transition BW was 0.5 MHz at 24 MHz Sample Rate

One Option is Change Transition BW to 12 MHz Which Would Reduce Filter Length by a Factor of 24

Second Option is Change Transition BW to 6 MHz Which Would let us see Stopband Level and Reduce Filter Length by a Factor of 12

Frequency Response of Prototype Filter In 30-Path Filter, 6 Taps per path at 48 MHz Sample Rate

Frequency Response, 180 Tap 30-Path 30 Channel Channelizer,

Significant Workload Reduction of 30-Path Filter

Originally 3720 Taps 124 Taps/Path

Now 180 Taps 6 Taps/Path

Following 30-Path Channelizer, we can Reduce Transition BW and Sample Rate with a Cascade Half Band FIR Filter on Each of the 24 Output Channels

Frequency Response, 233 Tap, Half-Band Filter Input Sample Rate 48 MHz, Output Sample Rate 48 MHz

We are not Finished Shaving Workload

Two-Path Implementation of Half Band Filter Reduces Sample Rate 2-to-1 While Reducing BW

Half of Weights in True Half Band Filter are Zero Upper Path has one Non Zero Weight

Lower Path has Even Symmetric Weights can Fold Filter and Operate Lower Path with 58 Multiplies per Output Sample at 24 MHz Rate

Following Channelizer, we can Reduce Transition BW and Sample Rate with a Cascade Half Band Linear Phase IIR Filter on Each of the 24 Output Channels

94 Tap Delay in IIR Filter

Frequency Response, 47 Coefficient Linear Phase IIR Half-Band Filter
Input Sample Rate 48 MHz, Output Sample Rate 48 MHz

Lower Path of Linear Phase Recursive 2-Path Filter Operates with 47 Multiplies per Output Sample at 24 MHz Rate

Compare Traditional Tapped Delay Line Filter Implementation to Polyphase Filter Implementation

Frequency Domain Filtering With Cascade M/2-to-1 Analysis and 1-to-M/2 Synthesis Channelizers

Workload: $70.6 / 660=10.7 \%$ of 660 Coefficient Tapped Delay Line Filter With same Frequency Response!

Following 30-Path Channelizer, we can Reduce Transition BW and Sample Rate with a Cascade 40-Path Analysis and Synthesis Channelizers on Each of the 24 Output Channels

40 Path Filter, 6-taps per path
40 Point IFFT, 5*8 Good-Thomas, Winograd, 100 multiplies
Workload: 40-Path Filter, 12-multiplies per input
40 Point IFFT 100/20, 5 Multiplies per 20 Inputs
34 multiplies per input output sample, Operating at 2.4 MHz Channelizer Rate

Following 30-Path Channelizer, we can Reduce Transition BW
and Sample Rate with a Cascade 40-Path Analysis and 20 Path Synthesis Channelizers on Each of the 24 Output Channels

40 Path Filter, 6-taps per path
40 Point IFFT, $5^{*} 8$ Good-Thomas, Winograd, 100 multiplies
Workload: 40-Path Filter, 12-multiplies per input
40 Point IFFT 100/20, 5 Multiplies per 20 Inputs
25 multiplies per input output sample, with 20 Path and 20 Point Output Filter

Following 30-Path Channelizer, we can Reduce Transition BW and Sample Rate with a Cascade 40-Path Analysis and 20-Path

Synthesis Half Band Super Filter on Each of the 24 Output Channels

Spectrum Synthesized from 20 1.2 MHz Channels of 40-Path Channelizer

Zoom to Transition Bandwidth

sample, with 40 Path Input Analysis and 20 Point Output Synthesis Channelizer Synthesized Super Filter

Lesson Learned in Multirate Channelizers

$>$ Don't Design Filter with Narrow Transition BW and High Sample Rate.
$>$ Solve Problem with Cascade of two Filters
First to Reduce BW and Sample Rate with Wide Transition BW
Second to Reduce Transition BW and
Sample Rate at Reduced Sample Rate
$>$ Design Signal Conditioning First Filter with
Reduced number of taps and Wider Transition BW
$>$ Design second Filter to operate at its Reduced Nyquist Sample Rate
$>$ Reduce Sample Rate to Nyquist Rate with Non Maximally
Decimated M-Path Polyphase Filter
$>$ Design and Operate Second Filter at Reduced Rate with Reduced Number of Coefficients
> If Required, Increase Sample Rate with M-Path Polyphase Filter

Analysis and Synthesis Channelizers with Even and Odd Indexed Bin Centers

M-Path Analysis Filter Bank with M to 1 Down Sampling Maximally Decimated Filter Bank

M-Path Analysis Filter Bank with M/2 to 1 Down Sampling Non Maximally Decimated Perfect Reconstruction Filter Bank

M-Path Analysis Filter Bank with M/2 to 1 Down Sampling Non Maximally Decimated Perfect Reconstruction Filter Bank

Odd Number of Bins

Center Frequencies: Match Roots of $Z^{N}-1, N$ Roots of $1, \exp (j 2 \pi k / N)$

Center Frequencies: Match Roots of Z^{N+1}, N Roots of $-1, \exp (j \pi / N) \exp (j 2 \pi k / N)$

M-Path Analysis Filter Bank with M to 1 Down Sampling Maximally Decimated Perfect Reconstruction Filter Bank Heterodyning Input Time Series Half a Bin Width to Convert Even Indexed to Odd Indexed Bin Centers

Construct both Even and Odd Interleaved Indexed Spectral Centers from Double Length Polynomial

Even Indexed Bins, $\{\ldots-4,-2,0,+2,+4, \ldots\} \cdot \frac{2 \pi}{N}$ Located at Roots of $\left(Z^{N}-1\right)$
Odd Indexed Bins, $\{\ldots-5,-3,-1,+1,+3,+5, \ldots\} \cdot \frac{2 \pi}{N}$
Located at Roots of $\left(Z^{N}+1\right)$
Interleaved Indicies, $\{\ldots-3,-2,-1,0,+1,+2,+3, \ldots\} \cdot \frac{2 \pi}{2 N}$
Located at Roots of $\left(Z^{N}-1\right)\left(Z^{+N}+1\right)=\left(Z^{2 N}-1\right)$
This Option Requires a Double Length Filter and IFFT
We do away with the Complex Heterodyne of half a
Bin Width of the Input Signal at the cost of a Double Length IFFT

Double Number of Center Frequencies
Center Frequencies: Match Roots of $Z^{2 N}-1,2 N$ Roots of $1, \exp (j 2 \pi k /(2 N))$

Odd or Even
5 Taps/Path
Number Bins

Another Approach

$>$ When N is an Even Number
$>$ There is Root Symmetry about $\mathrm{k}=0$ and $\mathrm{k}=\mathrm{N} / 2$
$>$ If we Heterodyne DC to the Half Sample Rate DC is still on a root of Z^{N}-1
$>$ DFT Samples Above and Below $\mathrm{k}=\mathrm{N} / 2$ are the same Samples Above and Below $\mathrm{k}=0, \mathrm{k}=+1$ and $\mathrm{k}=-1$
$>$ When N is an Odd Number
$>$ The Root Symmetry about k=0 Differs from k=N/2
$>$ There is no Root at $\mathrm{k}=\mathrm{N} / 2$!
$>$ There is a Root Above and Below N/2 by $\pm 1 / 2$

Symmetry of Zeros at DC and at fs/2 of a 16 Point DFT

Lack of Symmetry of Zeros at DC and fs/2 of a 15 Point DFT

M-Path Channelizer For Even Indexed DFT Bin Centers

M-Path Channelizer For Odd Indexed DFT Bin Centers

 Don't Shift Input Spectrum Half a Bin, Shift to fs/2

The Polyphase Filter Sees the Sign Changes of The Input Samples Because the Array has an Odd Number of Samples

Perform a Non-Maximally decimated Filter with an Even Number of Input Points

The Polyphase Filter No Longer Sees the Sign Changes of The Input Samples Because the Input Array has an Even Number of Samples

	data sign data sign			
	new		old	
10 New Inputs with sign	n	+	n-15	-
	$\mathrm{n}-1$	-	$\mathrm{n}-16$	+
	$\mathrm{n}-2$	+	$\mathrm{n}-17$	-
	n-3	-	$\mathrm{n}-18$	+
	n-4	+	$\mathrm{n}-19$	-
	n-5	-	$\mathrm{n}-20$	+
	n-6	+	n-21	-
	$\mathrm{n}-7$	-	$\mathrm{n}-22$	+
	n-8	+	n-23	-
	n-9	-	n-24	+
	n-10	+	n-25	-
	$\mathrm{n}-11$	-	$\mathrm{n}-26$	+
	$\mathrm{n}-12$	+	n-27	-
	n-13	-	n-28	+
	n-14	+	n-29	-

	data sign data sign			
	new		old	
10 New Inputs with sign	n+10	+	n-5	-
	n+9	-	n-6	+
	n+8	+	n-7	-
	n+7	-	n-8	+
	n+6	+	n-9	-
	n+5	-	n-10	+
	$n+4$	+	$\mathrm{n}-11$	-
	n+3	-	$\mathrm{n}-12$	+
	$\mathrm{n}+2$	+	$\mathrm{n}-13$	-
	n+1	-	$\mathrm{n}-14$	+
	n	$+$	$\mathrm{n}-15$	-
	$\mathrm{n}-1$	-	n-16	+
	n-2	+	$\mathrm{n}-17$	-
	n-3	-	$\mathrm{n}-18$	+
	n-4	+	n -19	-

The Rotators of the Non-Maximally Decimated Filter with an Even Number of Input Points can be Embedded in the Filter Weights

Channelizer Input Spectrum and Channelizer Channel Responses with 10 MHz Channel Center Spacing

DC at Index 0 of 18-Point DFT

DC at Index 4.5
of 18-Point DFT

Digital Communications
 Fundamentals and Applications

MUUTRRTESCOMLPROCESSNGC
 FOR COMMUNICATION SYSTEMS

Second Edition

(P) Bernard sklar and fred harris

amazon

Used - Good
\$759.95
\$3.99 delivery: March 2-17
Used - Acceptable
\$1,064.33
\$3.99 delivery: March 24 - April 5
Used - Good
\$1,076.20
FREE delivery: March 3-11
Fastest delivery: March 2-9
Used - Acceptable
\$1,324.00
\$3.99 delivery: March 24 - April 5

Professor harris: may I be excused? My brain is full!

Two Quick Examples of Applied Magic with Polyphase Filter Banks

Sitting over Japan is a geosynchronous satellite beaming down 192 stereo MP3 Signals.

Satellite Broadcasts
384 MP3 Channels to Earth Stations

Demodulate all MP3 Channels Remodulate as FM Channels

Task: Replace
Legacy Transceiver
What size room is required to house new DSP based Transceiver?

Equipment Bay: 192-Stereo FM Modulators

Conversation with Client!

- How big a room will we need to house the DSP version of this Transceiver?
- My Answer: I think it will fit on one chip.
- Response:

Don't be Absurd: Can't Pack a Room on a Single Chip!

- Results: 48-Analog Devices Blackfin Processors to Demodulate 192 MP3 Stereo Channels.
- 1 Virtex V-4 for 192 Digital Stereo FM Modulators and 256 Channel Channelizer @ 293 kHz Bandwidth per Channel. (60\% of Chip)

A Smaller Package

2-U High, Full Rack Width
H $3.5 \mathrm{in}, 8.89 \mathrm{~cm}$
W $17.0 \mathrm{in}, 43.18 \mathrm{~cm}$
D $9.4 \mathrm{in}, 23.88 \mathrm{~cm}$

How to Pack a Room of Analog FM Modulators into a Xilinx FPGA

> DSP techniques replace a legacy muli-channel andlog modulator.

You are llaly fimilar widh the woy chat dig－
 mukij hannel MPEG（Moticn Raure Expart Groupl comprewed video to 1 able head end where the muliple chunneh are demadulaed．The MPEG arcame are deashed and Itan mamodug NTSC（Nuisenal Thevinion Scandarda Commituse）or PAL（Phase Alomating Linet）rekvision signals for inuer－ ien in 1 able diurributisn Flare ．
Similaly high－qualiey nereo undio is rummined from a malive as muli－－harnel MP3（MPEG L－mer－3）compouned nutia to nalle haed end where che mulu ple chumnda are demoduluxd．The MP3 areume are dead andoy FM agnola for inuerion in cable dinnibuicn plant．

如何将
一大堆模拟 FM 调制器纳入
一个Xilinx FPGA 中

3001404
ffel：FRd Hants

98
60
cl havidunin als
Dryan vielic
Signo Cancept
工留空
angmetstialignawanspretan
Whe Lowdenla
Signer Canapta

anibhoientaignownephan

 －

Signal Specifications; Complex Input Samples, Independent Upper and Lower 95 MHZ Channels

Filter Specifications

Six Channels, 96 MHz wide Channels, 94 MHz Occupied, $16^{*} 102.4 \mathrm{MHz}=1.6384 \mathrm{GHz}$ sample rate Occupied band 108 to 684 MHz : stopband -80 dB , passband 0.05 dB

Spectrum: 1401-Tap Filter

Spectrum Direct Implementation (Red), Synthesized Implementation (Blue), Outer Tier Channel (Dashed Black), Inner Tier Channel (Black)

Spectrum, Zoom to Pass Band Ripple Frequency (MHz)
Spectrum, Zoom to Transition BW

Frequency (MHz)

Spectrum Direct Implementation (Red), Synthesized Implementation (Blue), Outer Tier Channel (Dashed Black), Inner Tier Channel (Black)

Dilbert, is it true that DSP makes the world go around but multirate signal processing supplies the music for the ride?

Can There be any Doubt???

SOFTWARE DEFINED RADIO MAN

Is Open For Questions

